Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808640

RESUMO

Unchecked, chronic inflammation is a constitutive component of age-related diseases, including age-related macular degeneration (AMD). Here we identified interleukin-1 receptor-associated kinase (IRAK)-M as a key immunoregulator in retinal pigment epithelium (RPE) that declines with age. Rare genetic variants of IRAK-M increased the likelihood of AMD. IRAK-M expression in RPE declined with age or oxidative stress and was further reduced in AMD. IRAK-M-deficient mice exhibited increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M disrupted RPE cell homeostasis, including compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of AAV-expressing IRAK-M rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in IRAK-M-deficient mice. Our data support that replenishment of IRAK-M expression may redress dysregulated pro-inflammatory processes in AMD, thereby treating degeneration.

3.
J Anim Ecol ; 92(1): 97-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321197

RESUMO

Many migratory species are in decline across their geographical ranges. Single-population studies can provide important insights into drivers at a local scale, but effective conservation requires multi-population perspectives. This is challenging because relevant data are often hard to consolidate, and state-of-the-art analytical tools are typically tailored to specific datasets. We capitalized on a recent data harmonization initiative (SPI-Birds) and linked it to a generalized modelling framework to identify the demographic and environmental drivers of large-scale population decline in migratory pied flycatchers (Ficedula hypoleuca) breeding across Britain. We implemented a generalized integrated population model (IPM) to estimate age-specific vital rates, including their dependency on environmental conditions, and total and breeding population size of pied flycatchers using long-term (34-64 years) monitoring data from seven locations representative of the British breeding range. We then quantified the relative contributions of different vital rates and population structure to changes in short- and long-term population growth rate using transient life table response experiments (LTREs). Substantial covariation in population sizes across breeding locations suggested that change was the result of large-scale drivers. This was supported by LTRE analyses, which attributed past changes in short-term population growth rates and long-term population trends primarily to variation in annual survival and dispersal dynamics, which largely act during migration and/or nonbreeding season. Contributions of variation in local reproductive parameters were small in comparison, despite sensitivity to local temperature and rainfall within the breeding period. We show that both short- and long-term population changes of British breeding pied flycatchers are likely linked to factors acting during migration and in nonbreeding areas, where future research should be prioritized. We illustrate the potential of multi-population analyses for informing management at (inter)national scales and highlight the importance of data standardization, generalized and accessible analytical tools, and reproducible workflows to achieve them.


Assuntos
Aves Canoras , Animais , Dinâmica Populacional , Aves Canoras/fisiologia , Estações do Ano , Crescimento Demográfico , Temperatura , Migração Animal
4.
Front Epidemiol ; 3: 1066158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38455905

RESUMO

War and conflict are global phenomena, identified as stress-inducing triggers for epigenetic modifications. In this state-of-the-science narrative review based on systematic principles, we summarise existing data to explore the outcomes of these exposures especially in veterans and show that they may result in an increased likelihood of developing gastrointestinal, auditory, metabolic and circadian issues, as well as post-traumatic stress disorder (PTSD). We also note that, despite a potential "healthy soldier effect", both veterans and civilians with PTSD exhibit the altered DNA methylation status in hypothalamic-pituitary-adrenal (HPA) axis regulatory genes such as NR3C1. Genes associated with sleep (PAX8; LHX1) are seen to be differentially methylated in veterans. A limited number of studies also revealed hereditary effects of war exposure across groups: decreased cortisol levels and a heightened (sex-linked) mortality risk in offspring. Future large-scale studies further identifying the heritable risks of war, as well as any potential differences between military and civilian populations, would be valuable to inform future healthcare directives.

5.
Stem Cell Reports ; 17(10): 2187-2202, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084639

RESUMO

Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.


Assuntos
Amaurose Congênita de Leber , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Criança , Códon sem Sentido , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Guanosina Monofosfato , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Organoides/metabolismo , Oxidiazóis , Diester Fosfórico Hidrolases/genética
6.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36121394

RESUMO

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Assuntos
Actomiosina , Miotonina Proteína Quinase , Fagocitose , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Miotonina Proteína Quinase/metabolismo , Fagocitose/fisiologia , Proteínas Tirosina Quinases , Receptores Fc , c-Mer Tirosina Quinase/metabolismo
8.
Lab Invest ; 99(10): 1547-1560, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31101854

RESUMO

Diabetic retinopathy is the most common microvascular complication of diabetes and is a major cause of blindness, but an understanding of the pathogenesis of the disease has been hampered by a lack of accurate animal models. Here, we explore the dynamics of retinal cellular changes in the Nile rat (Arvicanthis niloticus), a carbohydrate-sensitive model for type 2 diabetes. The early retinal changes in diabetic Nile rats included increased acellular capillaries and loss of pericytes that correlated linearly with the duration of diabetes. These vascular changes occurred in the presence of microglial infiltration but in the absence of retinal ganglion cell loss. After a prolonged duration of diabetes, the Nile rat also exhibits a spectrum of retinal lesions commonly seen in the human condition including vascular leakage, capillary non-perfusion, and neovascularization. Our longitudinal study documents a range and progression of retinal lesions in the diabetic Nile rat remarkably similar to those observed in human diabetic retinopathy, and suggests that this model will be valuable in identifying new therapeutic strategies.


Assuntos
Capilares/patologia , Retinopatia Diabética/patologia , Retina/patologia , Animais , Progressão da Doença , Edema/patologia , Estudos Longitudinais , Murinae
9.
Hum Mol Genet ; 28(11): 1865-1871, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689859

RESUMO

Choroideremia (CHM) is an x-linked recessive chorioretinal dystrophy, with 30% caused by nonsense mutations in the CHM gene resulting in an in-frame premature termination codon (PTC). Nonsense-mediated mRNA decay (NMD) is the cell's natural surveillance mechanism that detects and destroys PTC-containing transcripts, with UPF1 being the central NMD modulator. NMD efficiency can be variable amongst individuals with some transcripts escaping destruction, leading to the production of a truncated non-functional or partially functional protein. Nonsense suppression drugs, such as ataluren, target these transcripts and read-through the PTC, leading to the production of a full length functional protein. Patients with higher transcript levels are considered to respond better to these drugs, as more substrate is available for read-through. Using Quantitative reverse transcription PCR (RT-qPCR), we show that CHM mRNA expression in blood from nonsense mutation CHM patients is 2.8-fold lower than controls, and varies widely amongst patients, with 40% variation between those carrying the same UGA mutation [c.715 C>T; p.(R239*)]. These results indicate that although NMD machinery is at work, efficiency is highly variable and not wholly dependent on mutation position. No significant difference in CHM mRNA levels was seen between two patients' fibroblasts and their induced pluripotent stem cell-derived retinal pigment epithelium. There was no correlation between CHM mRNA expression and genotype, phenotype or UPF1 transcript levels. NMD inhibition with caffeine was shown to restore CHM mRNA transcripts to near wild-type levels. Baseline mRNA levels may provide a prognostic indicator for response to nonsense suppression therapy, and caffeine may be a useful adjunct to enhance treatment efficacy where indicated.


Assuntos
Coroideremia/tratamento farmacológico , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Helicases/genética , RNA Mensageiro/sangue , Transativadores/genética , Cafeína/administração & dosagem , Coroideremia/sangue , Coroideremia/genética , Coroideremia/fisiopatologia , Códon sem Sentido/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Oxidiazóis/administração & dosagem , Fenótipo , Células-Tronco Pluripotentes/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
10.
Regen Med ; 13(8): 935-944, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30488776

RESUMO

Human pluripotent stem cells (hPSCs) have the potential to transform medicine. However, hurdles remain to ensure safety for such cellular products. Science-based understanding of the requirements for source materials is required as are appropriate materials. Leaders in hPSC biology, clinical translation, biomanufacturing and regulatory issues were brought together to define requirements for source materials for the production of hPSC-derived therapies and to identify other key issues for the safety of cell therapy products. While the focus of this meeting was on hPSC-derived cell therapies, many of the issues are generic to all cell-based medicines. The intent of this report is to summarize the key issues discussed and record the consensus reached on each of these by the expert delegates.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/normas , Segurança do Paciente , Células-Tronco Pluripotentes/transplante , Medicina Regenerativa/normas , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Guias de Prática Clínica como Assunto , Medicina Regenerativa/métodos , Reino Unido
11.
Nat Biotechnol ; 36(4): 328-337, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29553577

RESUMO

Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)-derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.


Assuntos
Células-Tronco Embrionárias Humanas/transplante , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/transplante , Acuidade Visual/fisiologia , Idoso , Animais , Membrana Basal/diagnóstico por imagem , Membrana Basal/crescimento & desenvolvimento , Diferenciação Celular/genética , Feminino , Humanos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/crescimento & desenvolvimento , Transplante de Células-Tronco/efeitos adversos , Suínos , Tomografia de Coerência Óptica
13.
Stem Cell Reports ; 9(1): 1-4, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700896

RESUMO

Pluripotent stem cells may acquire genetic and epigenetic variants during culture following their derivation. At a conference organized by the International Stem Cell Initiative, and held at The Jackson Laboratory, Bar Harbor, Maine, October 2016, participants discussed how the appearance of such variants can be monitored and minimized and, crucially, how their significance for the safety of therapeutic applications of these cells can be assessed. A strong recommendation from the meeting was that an international advisory group should be set up to review the genetic and epigenetic changes observed in human pluripotent stem cell lines and establish a framework for evaluating the risks that they may pose for clinical use.


Assuntos
Análise Citogenética/métodos , Epigênese Genética , Variação Genética , Células-Tronco Pluripotentes/metabolismo , Medicina Regenerativa , Humanos , Maine , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Medicina Regenerativa/métodos , Medição de Risco
14.
Prog Brain Res ; 231: 225-244, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28554398

RESUMO

Age-related macular degeneration remains the most common cause of blindness in the western world, severely comprising patients' and carers' quality of life and presenting a great cost to the healthcare system. As the disease progresses, the retinal pigmented epithelium (RPE) layer at the back of the eye degenerates, contributing to a series of events resulting in visual impairment. The easy accessibility of the eye has allowed for in-depth study of disease progression in patients, while in vivo studies have facilitated investigations into healthy and diseased RPE. Consequently, a number of research groups are examining different approaches for the replacement of RPE cells in age-related macular degeneration (AMD) patients. This chapter examines some of these initial proof-of-principle studies and goes on to review the use of pluripotent stem cells as a source for RPE replacement in a number of current AMD clinical trials. Finally, we consider just some of the regulatory and manufacturing challenges presented in taking a promising AMD treatment from the research bench into clinical trials in patients, and how to mitigate potential risks early in process development.


Assuntos
Degeneração Macular/terapia , Células-Tronco Pluripotentes/citologia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco , Humanos
15.
Hum Mol Genet ; 26(13): 2480-2492, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444310

RESUMO

Ciliary trafficking defects are the underlying cause of many ciliopathies, including Retinitis Pigmentosa (RP). Anterograde intraflagellar transport (IFT) is mediated by kinesin motor proteins; however, the function of the homodimeric Kif17 motor in cilia is poorly understood, whereas Kif7 is known to play an important role in stabilizing cilia tips. Here we identified the ciliary tip kinesins Kif7 and Kif17 as novel interaction partners of the small GTPase Arl3 and its regulatory GTPase activating protein (GAP) Retinitis Pigmentosa 2 (RP2). We show that Arl3 and RP2 mediate the localization of GFP-Kif17 to the cilia tip and competitive binding of RP2 and Arl3 with Kif17 complexes. RP2 and Arl3 also interact with another ciliary tip kinesin, Kif7, which is a conserved regulator of Hedgehog (Hh) signaling. siRNA-mediated loss of RP2 or Arl3 reduced the level of Kif7 at the cilia tip. This was further validated by reduced levels of Kif7 at cilia tips detected in fibroblasts and induced pluripotent stem cell (iPSC) 3D optic cups derived from a patient carrying an RP2 nonsense mutation c.519C > T (p.R120X), which lack detectable RP2 protein. Translational read-through inducing drugs (TRIDs), such as PTC124, were able to restore Kif7 levels at the ciliary tip of RP2 null cells. Collectively, our findings suggest that RP2 and Arl3 regulate the trafficking of specific kinesins to cilia tips and provide additional evidence that TRIDs could be clinically beneficial for patients with this retinal degeneration.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas do Olho/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Ribosilação do ADP/genética , Cílios/metabolismo , Proteínas do Olho/genética , Proteínas de Ligação ao GTP , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Membrana/genética , Transporte Proteico , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
16.
Sci Rep ; 7(1): 51, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28246391

RESUMO

Inherited retinal dystrophies are an important cause of blindness, for which currently there are no effective treatments. In order to study this heterogeneous group of diseases, adequate disease models are required in order to better understand pathology and to test potential therapies. Induced pluripotent stem cells offer a new way to recapitulate patient specific diseases in vitro, providing an almost limitless amount of material to study. We used fibroblast-derived induced pluripotent stem cells to generate retinal pigment epithelium (RPE) from an individual suffering from retinitis pigmentosa associated with biallelic variants in MERTK. MERTK has an essential role in phagocytosis, one of the major functions of the RPE. The MERTK deficiency in this individual results from a nonsense variant and so the MERTK-RPE cells were subsequently treated with two translational readthrough inducing drugs (G418 & PTC124) to investigate potential restoration of expression of the affected gene and production of a full-length protein. The data show that PTC124 was able to reinstate phagocytosis of labeled photoreceptor outer segments at a reduced, but significant level. These findings represent a confirmation of the usefulness of iPSC derived disease specific models in investigating the pathogenesis and screening potential treatments for these rare blinding disorders.


Assuntos
Gentamicinas/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Oxidiazóis/farmacologia , Fagocitose , Retinose Pigmentar/terapia , c-Mer Tirosina Quinase/metabolismo , Adulto , Humanos , Masculino , Elongação Traducional da Cadeia Peptídica , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , c-Mer Tirosina Quinase/genética
17.
Biochem Soc Trans ; 44(5): 1245-1251, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911706

RESUMO

The photoreceptor cells in the retina have a highly specialised sensory cilium, the outer segment (OS), which is important for detecting light. Mutations in cilia-related genes often result in retinal degeneration. The ability to reprogramme human cells into induced pluripotent stem cells and then differentiate them into a wide range of different cell types has revolutionised our ability to study human disease. To date, however, the challenge of producing fully differentiated photoreceptors in vitro has limited the application of this technology in studying retinal degeneration. In this review, we will discuss recent advances in stem cell technology and photoreceptor differentiation. In particular, the development of photoreceptors with rudimentary OS that can be used to understand disease mechanisms and as an important model to test potential new therapies for inherited retinal ciliopathies.


Assuntos
Ciliopatias/patologia , Ciliopatias/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Retina/patologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Ciliopatias/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia
18.
Sci Rep ; 6: 33792, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653836

RESUMO

Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare, early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene, which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here, we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T > C, p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE, however in patient-derived iPSC-RPE, BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery, from an early developmental stage, could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients.

19.
Transl Vis Sci Technol ; 5(4): 6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27486556

RESUMO

PURPOSE: We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. METHODS: Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. RESULTS: The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and ßIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. CONCLUSIONS: Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. TRANSLATIONAL RELEVANCE: Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies.

20.
Hum Mol Genet ; 25(16): 3416-3431, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27329764

RESUMO

Choroideremia (CHM) is an X-linked chorioretinal dystrophy that is caused by mutations within a single gene, CHM Currently no effective treatment exists for these patients. Since over 30% of patients harbour nonsense mutations in CHM, nonsense suppression therapy using translational readthrough inducing drugs may provide functional rescue of REP1, thus attenuating progressive sight loss. Here, we employed two CHM model systems to systematically test the efficacy and safety of ataluren (PTC124) and its novel analog PTC-414: (1) the chmru848 zebrafish, the only nonsense mutation animal model of CHM harbouring a TAA nonsense mutation, and (2) a primary human fibroblast cell line from a CHM patient harbouring a TAG nonsense mutation. PTC124 or PTC-414 treatment of chmru848 embryos led to a ∼2.0-fold increase in survival, prevented the onset of retinal degeneration with reduced oxidative stress and apoptosis, increased rep1 protein by 23.1% (PTC124) and 17.2% (PTC-414) and restored biochemical function as confirmed through in vitro prenylation assays (98 ± 2% [PTC124] and 68 ± 5% [PTC-414]). In CHMY42X/y fibroblasts, there was a recovery of prenylation activity following treatment with either PTC124 (42 ± 5%) or PTC-414 (36 ± 11%), although an increase in REP1 protein was not detected in these cells, in contrast to the zebrafish model. This comprehensive study on the use of PTC124 and PTC-414 as successful nonsense suppression agents for the treatment of CHM highlights the translational potential of these drugs for inherited retinal disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Coroideremia/tratamento farmacológico , Degeneração Retiniana/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Coroideremia/genética , Coroideremia/patologia , Códon sem Sentido , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Oxidiazóis/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...